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Dynamics of a simple quantum system in a complex environment
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We present a theory for the dynamical evolution of a quantum system coupled to a complex many-body
intrinsic system~environment!. By modeling the intrinsic many-body system with parametric random matrices,
we study the types of effective stochastic models that emerge from random matrix theory. Using the Feynman-
Vernon path integral formalism, we derive the influence functional and obtain either analytical or numerical
solutions for the time evolution of the entire quantum system. We discuss thoroughly the structure of the
solutions for some representative cases and make connections to well known limiting results, particularly to
Brownian motion, Kramers classical limit, and the Caldeira-Leggett approach.@S1063-651X~98!04207-X#

PACS number~s!: 05.60.1w, 05.40.1j, 24.10.Cn, 24.60.2k
nd

ob
ct
e
h
u
d

er
i-

Th
ca
as
l-
n

te
.

ge
ao
ve
rg

ul
um
e

rre
th

as
u-

ad
or
as
he-
m,
re

The
ere
ub-

t a
rge
g:
ys-

the

is
ns,

tp

p:
I. INTRODUCTION

Quantum dissipation is a problem with a long history a
a multitude of results over several decades@1–11#. In spite of
this impressive effort, many people do not consider the pr
lem of quantum dissipation a solved issue, and its chara
and microscopic origin still call for the attention of a larg
community across many, if not all, subfields of physics. T
present paper represents a continuation of our effort to
derstand the character of energy flow between the slow
grees of freedom and the intrinsic degrees of freedom
many-body systems. Our initial motivation was to und
stand the ‘‘irreversible’’ time evolution of the large ampl
tude nuclear collective motion@6–10# and for that reason we
have adopted a traditionally nuclear physics approach.
large body of evidence, both experimental and theoreti
suggests that many fermion systems can be described re
ably well within the framework of a random matrix forma
ism. Another way of saying the same thing is that a ma
fermion system is predominantly a quantum chaotic sys
and thus a random matrix approach is a natural approach
the same time, both theory and experiment strongly sug
that there are some degrees of freedom, that are not ch
and usually are referred to as collective or shape. Howe
these collective degrees of freedom are coupled with a la
number of noncollective degrees of freedom and as a res
rather generic situation results: a relatively small quant
system in contact with an ‘‘environment.’’ Even though th
whole system is finite and in a strict sense there is no i
versible behavior in this case, for all practical purposes
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time evolution of the collective or slow quantum system h
the character of quantum dissipative dynamics. In our form
lation, we will neglect other physical mechanisms that le
to dissipative contributions, such as particle evaporation
coupling to electromagnetic fields. This can be viewed
limiting the present study to shorter time scales. Such p
nomena can in principle be introduced into the formalis
but we shall not attempt it here. We shall not either try he
to defend the legitimacy of such a terminology~dissipation!,
the issue at stake, however, is unquestionably sound.
reader will recognize easily that the problem we address h
is typical and under different guises appears in many s
fields of physics.

As an introduction, let us consider for the moment tha
certain simple system interacts with some relatively la
~but finite! many-body system. The question is the followin
can one describe the dynamical behavior of the simple s
tem using, for example, an equation of the form

M
d2X

dt2
52

dU~X!

dX
2Mg

dX

dt
1 f ~X,t ! ~1.1!

as in the case of a Brownian particle, if in the absence of
interaction the Hamiltonian of the system is

H0~X,P!5
P2

2M
1U~X! ~1.2!

and where g is a friction coefficient andf (X,t) is a
Langevin-like force? The forcef (X,t) can in principle de-
pend not only on time but on position as well, and in th
way one can describe a large variety of physical situatio
ranging from diffusion to localization@11#. If one could start
from a description of the entire system~reservoir plus simple
system! with a Hamiltonian

H~X,P,x,p!5H0~X,P!1H1~X,x,p!, ~1.3!
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PRE 58 197DYNAMICS OF A SIMPLE QUANTUM SYSTEM IN A . . .
whereH1(X,x,p) describes the reservoir and its interacti
with our system, under what circumstances could one de
an equation of motion like Eq.~1.1!? Moreover, would the
fluctuating force have Gaussian character or not? Since
approach is a fully quantum mechanical one, we shall be a
to answer another important question, on the specific
played by the quantum effects. As we shall show, the c
sical results are recovered when the appropriate limits
taken, however, the classical limit is not at all a trivial o
nor is it reached in a simple fashion. If one were to take
approach of postulating that an equation of the type Eq.~1.1!
governs the dynamics and assume, for example, that the
tuation properties off (X,t) are Gaussian in character, the
the entire powerful apparatus developed for Brownian m
tion can be then invoked@11#. But such an approach wil
leave unanswered the main questions of whether one
describe in this way collective degrees of freedom in a fin
closed system, like atomic nuclei.

We address this problem using a well known approa
based on the double path integral formulation of Feynm
and Vernon@1#. Our original input is in the functional form
of the influence functional, which arises from a parame
random matrix description of the ‘‘environment.’’ This ha
been attempted earlier in Ref.@5#. The functional form for
the influence functional we determine is qualitatively diffe
ent from the popular Caldeira-Leggett type derived by Fe
man and Vernon@1#. The parameters that define the infl
ence functional have a rather simple and intuitive mean
from a microscopic point of view and we refer the reader
earlier publications for details and discussions@5–10#. It
comes as no surprise that under such circumstances the
namical evolution of a quantum dissipative system in o
case has new features as well, as we shall amply exem
in the body of the paper. Here we restrict our attention to
Markovian limit only and we hope to address the importa
problem of memory effects in the future. In spite of its phy
cal restrictions~high temperature limit for the intrinsic sys
tem! this limit shows already the qualitative differences w
the previously known approaches.

The paper is organized as follows. In Sec. II we disc
the time evolution equation for the density matrix of t
‘‘slow’’ quantum system coupled to a complex many-bo
system. In Sec. III we show that, at high temperatures,
evolution equation for the density matrix can be brought
the Kramers form, when the classical limit is taken. Sectio
IV–V discuss exact solutions to the evolution equations
certain potentials. In Sec. VI we study tunneling. A sh
summary and discussion of the results is given in the fi
section.

II. EVOLUTION EQUATION
FOR THE DENSITY MATRIX

In this section we discuss the description of the inter
degrees of freedom~or complex environment! through para-
metric random matrix theory, and derive the equation of m
tion for the density matrix of the slow degrees of freedom
integrating over the internal states.

A. Random matrix model

The basic assumption concerning the intrinsic state
that there are no governing constants of the motion, so
e
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the dynamics is chaotic. This has been seen to be the ge
situation in studies of many-body systems, from nuclei
molecules, so it is reasonable to approach the modeling
these degrees of freedom with random matrices, suitably
lored to the problem. The generic form of the Hamiltoni
governing the dynamics of a ‘‘slow’’ quantum syste
coupled to a complex environment is described as follow

H~X,x!5H0~X!1H1~X,x!5
PX

2

2M
1U~X!1H1~X,x!.

~2.1!

We shall often refer toX as ‘‘shape’’ variables, since in larg
amplitude collective nuclear motion it represents the coll
tive coordinates which characterize the nuclear mean fie

The part of the total Hamiltonian Eq.~2.1! that depends
on the intrinsic coordinatesH1(X,x) is defined as a matrix
whose matrix elements depend parametrically on the ‘‘slo
coordinateX:

@H1~X!# i j 5@h0# i j 1@h1~X!# i j . ~2.2!

h0 is taken to be diagonal and defines the average densi
states, with^kuh0u l &5@h0#kl5«kdkl . We refer in the main
text to these eigenstates as ‘‘typical states’’ of the intrin
system with an energy«. One can think ofh0 as a Hamil-
tonian describing a ‘‘bath’’ or a ‘‘reservoir’’ and ofh1(X) as
a Hamiltonian describing the interaction between the ‘‘ba
reservoir’’ and the ‘‘slow’’ system. Whereas in statistic
physics the interaction between the thermostat and the
tem under consideration is assumed to be negligible, we s
not make such an approximation here. As a matter of f
for the physically interesting situations we envision, this co
pling term can be large. This fact alone leads to signific
differences of various distributions when compared with
corresponding results of traditional approaches.

For an intrinsic subsystem with a large number of degr
of freedom, the average density of states,

r~«!5Tr d„H1~X!2«…, ~2.3!

for each given shapeX increases sharply with energy. Th
overline denotes here a procedure for extracting the smo
part of r(«) as a function of energy, which amounts esse
tially to an ensemble average, to be introduced below. Fo
many Fermion system,r(«) has a roughly exponential be
havior. Recall that lnr(«) is approximately proportional to
the thermodynamic entropy of the intrinsic system, which
an extensive quantity. The fact that the average density
states for the intrinsic subsystem has such a behavior is a
element of the entire approach. This is equivalent to sta
that the intrinsic subsystem has a large heat capacity and
can play the role of a ‘‘reservoir,’’ although not necessar
ideal. In principler(«) can beX dependent as well, but we
shall ignore this aspect here. Without anX dependence of the
average density of states, mechanical work cannot be
formed on or by the model environment we study here, a
only heat exchange is allowed.

In Refs. @6–10# we discussed the reasons why o
chooses this specific form of the Hamiltonian. In the basis
the eigenstates ofh0, we defineh1(X) as a parameter depen
dent, N3N real Gaussian random matrix, which is com
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TABLE I. The definition of our parameters as well as some of the limits used in this analysis.

Parameters:

X0 Characteristic scale over whichH1(X) changes.
N Dimension of the Hilbert space of the intrinsic subsystem. We take the limitN@1.

k0
The bandwidth of the random matrixH1(X). The average number of states coupled together at a given excitation e
is determined by the density of states:N0;k0r(«). For k0→`, we recover the full random matrix limit.

G↓
Spreading width. For an initially uncorrelated state evolving under a random matrix, the average propagator de
s(t);exp(2G↓t/2\).

b51/T Inverse thermodynamic temperature, defined through the density of states.
r(«) The density of states. We use the formr(«)5r0 exp(b«). Whenb50, the intrinsic system has a constant level dens

G(x)
Correlation function for the intrinsic states. It describes how far one must go inX before the intrinsic states ar
statistically uncorrelated. Typically one can useG(x)5exp(2x2/2), 12x2/2 or cosx.

g
Friction coefficient obtained in the classical limit and in the full quantum dynamical solution, given bg
5bG↓\/2MX0

2.
D Diffusion constant, given byD52X0

2/b2G↓\.

Limits:

X0→` Weak coupling limit.

\/X0→0

X0 /G↓→0

g5finite
J Brownian motion limit.

\→0 Classical limit.
k0→` Adiabatic limit. This implies that the collective time scaleX0 /V is much longer than the intrinsic one given by\/k0.
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pletely specified by its first two moments

@h1~X!#kl50,
~2.4!

@h1~X!# i j @h1~Y!#kl5@d ikd j l 1d i l d jk#Gi j ~X2Y!.

The overline stands for statistical averages over the ense
of random Gaussian matrices from the Gaussian orthog
ensemble~GOE! @12#. Gi j (X2Y) can be taken as a ‘‘bel
shaped’’ correlation function with a characteristic widthX0,
or, in some physically interesting cases even periodic, w
period }X0. The fact that this correlator is ‘‘translationa
invariant’’ is not a crucial limitation, and a general form ca
be adopted without any significant changes in the formali
We limit our analysis to the GOE case only for the sake
simplicity of the argument, as any other Gaussian ensem
can be treated in a similar manner. The dependence oni , j
allows for the description of banded matrices, where an
fective number of statesN0<N are coupled byh1(X). It is
convenient to use an explicit parametrization, which inc
porates the average density of states and the bandwidt
the statistical fluctuations explicitly@5#:

Gi j ~X!5
G↓

2pAr~« i !r~« j !
expF2

~« i2« j !
2

2k0
2 GGS X

X0
D .

~2.5!

HereG(x)5G(2x)5G* (x)<1, G(0)51, and the spread
ing width G↓, k0 @linked with the effective band widthN0
'k0r(«)] and X0 are characteristic of the intrinsic system
Even though it is not necessary, in this paper we shall c
sider a particular from for G(x), namely, G(x)
5exp(2x2/2).
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To complete the tailoring of the random matrices, we
quire a realistic average density of states for the reservoi
is reasonable to assume that in a suitable energy intervar
has the behavior@5#

r~«!5r0 exp~b«!, b5
1

T
5

d

d«
ln r~«!. ~2.6!

b can thus be interpreted as the thermodynamic tempera
of the intrinsic system. Asb is independent of the interna
excitation energy«, this particular type of intrinsic quantum
system plays the role of a ‘‘perfect’’ thermal quantum res
voir. We note in passing that even though the temperatur
the ‘‘reservoir’’ remains constant throughout the entire d
namical evolution of the whole system, one should not c
clude from this that the ‘‘reservoir’’ is in thermal equilib
rium. As we have shown explicitly in Refs.@8,9# the
population of various energy levels of a uniformly drive
‘‘reservoir’’ is far from an equilibrium Boltzmann distribu
tion. The parameters of the present construction are sum
rized in Table I.

B. Influence functional

The quantum description of our coupled system will
treated through the path integral construction of the den
matrix. According to Feynman and Vernon@1#, one can write
the following double path integral representation for the d
sity matrix of the entire system
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R~X,x,Y,y,t !5E dX0dY0c~X0!c* ~Y0!E
X~0!5X0

X~ t !5X
DX~ t !E

Y~0!5Y0

Y~ t !5Y
DY~ t !expH i

\
@S0„X~ t !…2S0„Y~ t !…#J

3K xUT expF2
i

\E0

t

dt8 H1„X~ t8!…GUfL K fUTa expF i

\E0

t

dt9 H1„Y~ t9!…GUyL , ~2.7!

whereT andTa represent the time ordering and time antiordering operators, respectively. In this representation, we ha
a particular form for the initial state wave function,

C~X,x!5c~X!f~x!. ~2.8!

Other choices are equally possible, such as an initial density matrix. By introducing the influence functionalL„X(t),Y(t),t…:

L„X~ t !,Y~ t !,t…5K fUH Ta expF i

\ E
0

t

dt9 H1„Y~ t9!…G J H T expF2
i

\E0

t

dt8H1„X~ t8!…G J UfL ~2.9!

one readily obtains the following double path integral representation for the density matrix for the ‘‘slow’’ subsystem

r~X,Y,t !5E dX0dY0c~X0!c* ~Y0!E
X~0!5X0

X~ t !5X
DX~ t !E

Y~0!5Y0

Y~ t !5Y
DY~ t !expH i

\
@S0„X~ t !…2S0„Y~ t !…#JL„X~ t !,Y~ t !,t….

~2.10!

The formulation of the problem through a path integral representation serves only as a very convenient vehicle to o
evolution equation for the density matrixr(X,Y,t).

C. Evolution equations

The evolution equation for the influence functionalL„X(t),Y(t),t… has been solved in Refs.@8–10# for the caseN→` and
the case when the ‘‘temperature’’ of the reservoir is infinite. In Appendices A–D we compute the first order correctiob
to the influence functional in the adiabatic limit, when the characteristic time scale of the ‘‘reservoir’’\/k0 is significantly
shorter than the characteristic time scale of the slow system for which we derive the dynamical evolution equation.
obtain for the influence functional

L„X~ t !,Y~ t !…5expH G↓

\ E
0

t

dsFGS X~s!2Y~s!

X0
D21G J expH ibG↓

4X0
E

0

t

ds@Ẋ~s!1Ẏ~s!#G8S X~s!2Y~s!

X0
D J , ~2.11!

whereG8(x)5dG(x)/dx. The physical significance of all other quantities entering this expression has been explain
discussed at length in Refs.@6–9#, and is briefly summarized in Table I. It is worth noting that the functional form of
influence functional derived by us is different from the Caldeira-Leggett form@2#, which is a quadratic expression inX(t) and
Y(t). If we were to use only the first term in a Taylor expansion ofG„[X(s)2Y(s)]/X0…21, we would obtain an expressio
similar to Caldeira-Leggett form for the influence functional. However, the present form of the influence functional lead
classical limit to a velocity dependent frictional force, see Refs.@8,9#.

By combining the double path integral representation for the density matrixr(X,Y,t) with the above expression for th
influence functional in the adiabatic approximation one readily obtains that the density matrix satisfies the fo
Schrödinger-like equation~for similar examples see Refs.@2,4#!:

i\] tr~X,Y,t !5H PX
2

2M
2

PY
2

2M
1U~X!2U~Y!2

bG↓\

4X0M
G8S X2Y

X0
D ~PX2PY!1 iG↓FGS X2Y

X0
D21G J r~X,Y,t ! ~2.12!
re
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he
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with an arbitrary initial condition

r~X,Y,0!5r0~X,Y!. ~2.13!

This equation is the central object of our study and the
mainder of the paper is devoted to determining various l
iting regimes and the character of its solutions upon vary
b, G↓, X0, and\. ~In this paper we have already taken t
limit k0→`.! At first glance the reader might get the impre
-
-
g

sion that the slow subsystem we consider here is chara
ized by one degree of freedom only. As a simple analy
will show, however, that the slow subsystem can have
arbitrary number of degrees of freedom and most of the
mulas we shall present are equally valid in this case.

This evolution equation is somewhat peculiar in certa
aspects. It is obvious that in the absence of the coupling
the ‘‘reservoir,’’ it describes a purely quantum evolution
the ‘‘slow’’ subsystem. Equation~2.12! has been derived
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from a purely quantum description of the entire system,
performing the expansion inb. In Eq. ~2.12!, however, the
inverse temperature enters only in the combinationt th5b\,
which can be interpreted as a thermal time~analogous to the
thermal de Broglie wavelength!. Thus the expansion in th
inverse temperatureb is at the same time an expansion in\.
Our limitation to the zeroth and first order terms inb\ for
the coupling between the ‘‘slow’’ subsystem and the ‘‘res
voir’’ can consequently be interpreted as a semiclassical
proximation.

It has been argued by Diosi@4# that for the case of a
Caldeira-Leggett correlator@G(x)512x2/2# the similar
high temperature limit of the evolution equation requires
retention of the next order term inb in order to bring the
corresponding approximate evolution equation to a Lindb
form @13#, which guarantees the positivity of the density d
tribution for any physically acceptable initial condition
~We have computed theb2 corrections, and will discuss
them at a later time.! If these higher order terms inb are not
introduced, such an equation@as Eq.~2.12!# cannot be ap-
plied to an initial state, which is narrower than the thermal
Broglie wavelength,lT52p\Ab/M . This restriction to
wave packets that are wider than the thermal de Bro
wavelength is manifest in a somewhat different way as w
Let us compute the rate of change of the ‘‘total energy’’
the ‘‘slow’’ subsystem, which can be defined naturally
follows:

E0~ t !5Tr@H0r~ t !#. ~2.14!

Using the evolution equation Eq.~2.12! for the density ma-
trix r(X,Y,t), after some straightforward manipulations o
obtains the following expression for the rate of change of
‘‘total energy’’:

dE0~ t !

dt
52gFT

2
2

^P2&
2M G , ~2.15!

whereg is the friction coefficient in the small velocity limi
to be introduced below, see Eq.~3.2!. This rate has an ap
parently pure classical content. This is of course deceiv
as quantum effects are clearly retained in both Eqs.~2.12!
and~2.15!, even though not entirely in Eq.~2.15!. However,
since one has to assume thatT.\2/ML2, whereL is the
characteristic spatial extension of the state, it is possibl
Eq. ~2.15! to replace the quantitŷP2&5^P&21^^P2&& with
simply ^P&2. This renders Eq.~2.15! purely classical in char-
acter. One incurs a certain loss of accuracy and a small
gree of inconsistency by proceeding in this manner, so
better to leave Eq.~2.15! as it is.

Even though one can go beyond the first order inb and
derive a more accurate evolution equation for the den
matrix r(X,Y,t) in the high temperature limit, we shall no
do that in this work, for the sake of simplicity of the prese
tation. We do not expect that such corrections will lead t
qualitatively new behavior, aside from the question of t
positivity of the density matrix, as mentioned earlier.
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D. Coordinate and momentum distributions
and the cumulants expansion

We will derive the time dependent solutionsr(X,Y,t) in
the following sections, and from that it will be useful t
extract information concerning the behavior of coordina
and momenta. The most convenient way to do so is thro
the cumulant expansion. To define this, we start by introd
ing the new variables:

r 5
X1Y

2
, s5X2Y. ~2.16!

Coordinate and momentum information can readily be
tracted from the following Fourier transform of the dens
matrix:

d~s,k,t !5E dr expS 2
ikr

\ D r~r ,s,t !. ~2.17!

For eithers50 or k50, d(s,k,t) is the characteristic func
tion @14# for the spatial or momentum distribution of a give
quantum state, respectively. For example, if we are intere
in the spatial diffusionX, as measured bŷ̂ X2&&, then we
get from Eq.~2.17! and integration by parts:

^X2&5E dX8r~X8,X8,t !X82

52\2
d2

dk2
d~0,k,t !U

k50

5^^X2&&1^X&2. ~2.18!

Similarly, in order to compute the average collective ene
one needŝP2&:

^P2&5E dX dX8r~X,X8,t !^X8uP2uX&

5
1

2p\E dX dX8dP r~X,X8,t !expF iP~X82X!

\ GP2

5E ds dPexpS iPs

\ Dd~s,0,t !P2

52\2
d2

ds2
d~s,0,t !U

s50

5^^P2&&1^P&2. ~2.19!

The quantities denoted̂̂ •••&& are the cumulants of the dis
tribution.

From the definition of the functiond(s,k,t) one defines
the general coordinate and momentum cumulant expan
as:

ln d~s,k,t !us505 (
n51

`
1

n! S ik

\ D n

^^r n&&, ~2.20!
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PRE 58 201DYNAMICS OF A SIMPLE QUANTUM SYSTEM IN A . . .
ln d~s,k,t !uk505 (
n51

`
1

n! S s

i\ D n

^^pn&&, ~2.21!

where^^r n&& and^^pn&& are the~time dependent! cumulants
of the spatial and momentum distribution, respectively. O
can show that the zeroth order terms in both cumulant
pansions vanish, which is consistent with the fact that
probability is conserved within the present formalism.

A Gaussian process has only nonvanishing first and
ond cumulants. In general it is known from Marcienkiewic
@14# or Pawula’s@15# theorem, that for a probability distri
bution, one either has a Gaussian process with only the
two cumulants nonvanishing, or all cumulants are pres
Furthermore, while there are some inequalities that re
cumulants of varying order, in most cases there is no res
tion on their sign, which can be positive or negative.

III. CLASSICAL LIMIT: KRAMERS EQUATION

It is interesting to explore the classical transport equat
that emerges from Eq.~2.12!. The standard approach is t
construct the Wigner transformf (Q,P,t) of the density ma-
trix r(X,Y,t) as
n

w

fa
e
x-
e

c-
’

st
t.
te
c-

n

f ~Q,P,t !5
1

2p\E dR expS 2
iPR

\ D
3rS Q1

1

2
R,Q2

1

2
R,t D . ~3.1!

It is well known that whilef (Q,P,t) can be interpreted as
classical probability distribution in a phase space (Q,P), it is
only a quasiprobability since its sign can be positive or ne
tive at a given phase space point, while its integral over a
unit phase space cell~of size\) is positive semidefinite. We
will further introduce the friction coefficient:

g5
bG↓\

2MX0
2

. ~3.2!

This definition will emerge naturally from the analysis of th
dynamical evolution of quantum systems. However, in ta
ing the Wigner transform ofr(X,Y,t), the classical limits of
the quantitiesG↓ and X0 must be taken, which have an in
trinsic quantum interpretation. While it is not entirely cle
how to define such limits, we will see that the combinati
which appears ing has a natural classical interpretation.

From the definition, the classical evolution equation c
be computed, which is the Wigner transform of the rig
hand side of Eq.~2.12!:
] t f ~Q,P,t !5
1

2p\E dR expS 2
iPR

\ D ] trS Q1
1

2
R,Q2

1

2
R,t D

5
1

2ip\2E dR expS 2
iPR

\ D H 2
\2

2M
]Q]R1US Q1

1

2
RD2US Q2

1

2
RD2 iG↓F12GS R

X0
D G

1 ig\X0G8S R

X0
D ]RJ rS Q1

1

2
R,Q2

1

2
R,t D . ~3.3!

For the contribution due to the potential energyU(X), the Kramers-Moyal expansion gives

E dR

2p\
expS 2

iPR

\ D FUS Q1
1

2
RD2US Q2

1

2
RD GrS Q1

1

2
R,Q2

1

2
R,t D

5U~Q!
2

\
sinS \]QQ]W P

2 D f ~Q,P,t !5]QU~Q!]Pf ~Q,P,t !1o~\!, ~3.4!
is
r-
n

l

where ]QQ and ]W P in the sine term act only onU and f ,
respectively. In the last line only terms too(\) were re-
tained. For the terms that depend upon the correlation fu
tion G(x), we consider a general expansion

G~x!'12
x2

2
1¯ . ~3.5!

The terms beyond the quadratic ones in the expansion
come with higher powers of\ into the evolution equation
and are hence omitted. Integrating by parts and using the
that r(X,Y,t) vanishes whenX,Y→6`, we have
c-

ill

ct

] f ~Q,V,t !

]t
1V

] f ~Q,V,t !

]Q
2

1

M

]U~Q!

]Q

] f ~Q,V,t !

]V

5gH ]@V f~Q,V,t !#

]V
1

T

M

]2f ~Q,V,t !

]V2 J , ~3.6!

whereT51/b is the temperature, and the velocity isV5Q̇
5P/M . We have thus obtained Kramers equation@15#.

We will derive transport coefficients below, and it
worth noting that taking classical limits is not straightfo
ward. In quantum Brownian motion, we extract a diffusio
constant that is related to the frictiong through the classica
Einstein relation:
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DQQ5
2X0

2

b2G↓\
5

T

gM
. ~3.7!

We note here that our transport theory has a consistent
sical limit for all of these transport coefficients only whe
they remain finite as\→0. This requires in turn that the
parameters of our theory cannot remain constant as\→0, if
we are to recover a well defined classical transport.

IV. LINEAR POTENTIAL
AND QUANTUM BROWNIAN MOTION

The classical picture of a Brownian particle in a const
force fieldF and interacting with a heat bath is described
the Langevin equation for the velocity:

v̇1gv2
F

M
5 f ~ t !. ~4.1!

Hereg is the friction coefficient, andf (t) is Gaussian white
noise. In the long time limit the particle energy equilibrat
with ^^p2&&5TM and there is a finite drift velocityv`

5F/gM . In this section we consider the dynamics of a qua
tum particle in a constant force field interacting with o
random matrix bath and contrast it to this classical limit. T
results discussed here should be contrasted with those fo
caseb50, where we have found that the quantum dynam
is similar to turbulent diffusion@9,10#.

A. Exact solution

Let us consider the case when there is a linear poten
acting on the slow variables

H0~X!52
\2

2M
]X

22FX. ~4.2!

One can consider the case of a time dependent linear po
tial as well, i.e.,U(X,t)52F(t)X, with only very slight
modifications of the ensuing formulas. The equation for
density matrix now becomes

F i\] t1
\2

M
] r]s2

ibG↓\2

2X0M
G8S s

X0
D ]sGr~r ,s,t !

5H 2Fs1 iG↓FGS s

X0
D21G J r~r ,s,t ! ~4.3!

with the initial conditionr(r ,s,0)5r0(r ,s). It is not neces-
sary to consider a pure state as an initial state, and we a
for any general initial density matrix. The mixed partial d
rivative can be removed by passing to the Fourier tra
formed equation~see Sec. II D! for d(s,k,t). This satisfies
the equation

H ] t1F k

M
2

bG↓\

2MX0
G8S s

X0
D G]sJ d~s,k,t !

5H iFs

\
1

G↓

\ FGS s

X0
D21G J d~s,k,t !. ~4.4!
s-

t

-

e
the
s

ial

n-

e

w

-

Using the method of characteristics for wave equations@16#
one can find the solution in parametric form:

d~s,k,t !5d0„S~ t !,k…expH E
0

t

dt8F iFS~ t2t8!

\

1
G↓

\
FGS S~ t2t8!

X0
D21G G J , ~4.5!

where the time dependent functionS(t2t8) is the solution of
the auxiliary equation

dS~t!

dt
52F k

M
2

bG↓\

2MX0
G8S S~t!

X0
D G . ~4.6!

Hered(s,k,t)u t505d0(s,k) is the initial distribution, which
is just the Fourier transform ofr0(r ,s). The coordinates
appears in this solution as an initial condition onS: S(0)
5s. These equations define the flow of the density matrix
time. For an arbitraryt8 the functionS(t2t8) also satisfies
the homogeneous equation

H ] t1F k

M
2

bG↓\

2X0M
G8S s

X0
D G]sJ S~ t2t8!50. ~4.7!

Again, S(t2t8) depends ons through the initial condition.
One can reexpress the full solution in terms of an init
condition density matrixr0 as well:

r~r ,s,t !5E E dr8dk

2p\
r0„r 8,S~ t !…expH ik~r 2r 8!

\

1E
0

t

dt8F iFS~ t2t8!

\
1

G↓

\ FGS S~ t2t8!

X0
D21G G J .

~4.8!

There are no restrictions on the initial conditionsr0(r ,s),
but it is convenient in our considerations below to use
particular form. If we have an initial Gaussian wave fun
tion, c0(X)5exp(2X2/4s2)/(2ps2)1/4, then

r0~r ,s!5
1

A2ps2
expS 2

4r 21s2

8s2 D , ~4.9!

d0~s,k!5expS 2
k2s2

2
2

s2

8s2D . ~4.10!

B. Attractors and repellors

It is clear that the time evolution ofr(r ,s,t) depends on
the properties ofS(t). Hence the flow of the solution
r(r ,s,t) can be better understood if we examine the sta
and unstable fixed points ofS(t). In order to discuss furthe
the character of this solution it is convenient to use a spec
form for the correlatorG, so for illustrative purposes we us
G(x)5exp(2x2/2). The fixed points are determined from th
condition

k5
bG↓\

2X0
G8S s

X0
D , ~4.11!
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which is plotted in Fig. 1~top!. @The analogous result for th
case of a periodic correlation functionG(x)5cos(x) is
shown in Fig. 1~bottom!.# This has a maximum valuek0
given by

k05
bG↓\

2AeX0

. ~4.12!

The character of the trajectoriesS(t) determined by solving
Eq. ~4.6! depends on whetheruku.k0 or uku<k0. Sincek is
not dynamical, the evolution is only along thes direction.
The flow linesS(t) are shown in Fig. 1 with the arrows fo
selected values ofk. As one can see, the part of the cur
between21,s/X0,1 is a line of stable fixed points~attrac-
tors!, while for us/X0u.1, it becomes a line of unstable fixe
points ~repellors!. When uku.k0 the right-hand side of Eq
~4.6! maintains a definite sign soS(t) is either a monotoni-
cally increasing or decreasing function of time, for any giv
initial condition S(0)5s. When 2k0<k<k0 one can see
from Fig. 1 that there are two types of solutions. Furth
sincek0 depends onb, asb→0, k0→0 and the character o
the dynamical evolution depends on temperature.

In general the trajectoryS(t) can be determined through
simple quadrature

t5E
s

S~t!

dxF2
k

M
1

bG↓\

2MX0
G8S x

X0
D G21

. ~4.13!

C. Momentum cumulants: Thermalization

In order to determine the momentum cumulants we m
construct the Taylor expansion of the function lnd(s,k,t) in
powers ofs at k50. One can see from Fig. 1 that along t
k50 line, all trajectories flow to the originS50 in the long

FIG. 1. Time dependent flowS(t) associated with the time evo
lution of the density matrix in a linear potential. Top: The case o
Gaussian correlationG(x)5exp(2x2/2). Bottom: The flow for a
periodic correlation functionG(x)5cos(x). The stability of the
lines of fixed points are indicated by the directions of the arrow
,

st

time limit. By changing the integration variable in Eq.~4.5!
from time to x5s/X0, using Eq.~4.6!, in the limit t→`,
where all trajectories have the property thatS(t)→0 we ob-
tain

ln d~s,0,t !5 ln d0„S~ t !,0…1
1

i\

2FMX0
3

bG↓\
E

0

s/X0
dx expS x2

2 D
1

2MX0
2

\2b
E

0

s/X0dx

x F12expS x2

2 D G . ~4.14!

From the power series expansion of the integrands, one
readily read off all the momentum cumulants in the limitt
→`. In this limit the initial conditions become irrelevant a
lnd0„S(t),0…→0. In particular the first and second cumulan
are

^^p&&5
2MFX0

2

bG↓\
5

F

g
, ~4.15!

^^p2&&5
M

b
5MT. ~4.16!

One can see the physical picture emerging here. In
long time limit the quantum particle reaches a terminal v
locity determined from the first cumulant:

v`5
^^p&&

M
5

2FX0
2

bG↓\
5

F

Mg
, ~4.17!

with the definition of the friction coefficientg identical to
that in Kramers equation, Eq.~3.2!. Further, the kinetic en-
ergy of the particle equilibrates to the proper thermal eq
librium results:

^p2&
2M

5
^^p&&2

2M
1

^^p2&&
2M

5
Mv`

2

2
1

T

2
. ~4.18!

What is more notable, however, is that the moment
distribution has higher than second order cumulants, wh
increase exponentially with the order of the cumulant. In
absence of the linear potential (F50) only the even order
cumulants are nonvanishing, and are given by

^^p2n&&5~21!n21
~2n21!!!

n

MX0
2

\2b
S \

X0
D 2n

. ~4.19!

The presence ofF adds only odd cumulants:

^^p2n21&&5~21!n21~2n23!!!
FX0

g\ S \

X0
D 2n21

.

~4.20!

All higher than second order cumulants vanish in the st
classical limit \→0. These cumulants also vanish in th
limit X0→`, which shall be interpreted as a weak coupli
limit to the thermostat~which is the case in statistical phys
ics!. When the coupling to the ‘‘thermostat’’ is not weak,
the t→` limit the function d(s,0,t) ~which is the Fourier
transform of the momentum distribution! is narrower than a
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Gaussian and which thus leads to an equilibrium momen
distribution with longer tails. This is exemplified in Fig. 2
where we compare the natural logarithm of the moment
characteristic function Eq.~4.14! for the case whenM5\
5b51, F50 with ~from narrowest to widest! X050.1, 0.5,
1, 2 andX05` ~the Gaussian limit!. The presence of a linea
potential does not modify the absolute value of the char
teristic function, only its phase.

Naively, one would have expected that the coupling to
thermostat is controlled by the magnitude ofG↓ alone. As
one can easily convince oneself, however, the coupling
tween the two systems is also controlled by the correla
length X0. In the limit X0→` there is no energy exchang
between the two subsystems, irrespective of the value of
‘‘coupling constant’’G↓. For X05` the reservoir never re
sponds to the ‘‘external agent’’ and only its excitation spe
trum acquires GOE fluctuation characteristics ifG↓, r0, and
k0 satisfy certain well known requirements.

D. Coordinate cumulants and diffusion

For the coordinate distributions, we compute the Fou
transformd(s50,k,t). Sinces enters as the initial condition
the solutions that characterize the spatial information are
trajectories with initial conditionsS(0)5s50 and arbitrary
k. From Fig. 1, we can see that there are three region
consider:~1! for uku,k0 the trajectories have the proper
that S(t→`) approach the attractor exponentially,~2! for
uku5k0, the trajectories approach the attractor as an inve
power law, and~3! for uku.k0, the trajectories diverge lin
early in timeS(t→`)→2sgn(k)`. We shall analyze nex
the behavior of the characteristic functiond(s50,k,t) in
these different regimes.

1. zkz<k0

For smallk one can linearize Eq.~4.6! around the origin
and solve the simpler equation:

dS~t!

dt
52

k

M
2

bG↓\S~t!

2MX0
2

52
k

M
2gS~t!, ~4.21!

whose solution is

FIG. 2. Fourier transform of the momentum distributio
d(s,0,t), as a function ofs, for F50 and M5\5b51. From
narrowest to widest we haveX050.1,0.5,1,2,̀ . TheX05` ~widest
curve! is a Gaussian distribution.
m
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S~t!5S s1
k

gM Dexp~2gt!2
k

gM
. ~4.22!

In the t→` limit, by retaining only terms linear in time we
obtain

ln d~s,k,t !us505 ln d0„S~ t !,k…2
ik

\

2FX0
2t

bG↓\

2
1

2S k

\ D 2 4G↓X0
2t

~bG↓!2\
1O~k3!. ~4.23!

For an initial Gaussian wave packet, lnd0„S(t),k…
52S2(t)/8s22k2s2/2\2. In the long time limit,S(t) ap-
proaches the fixed points1(k) of Eq. ~5.10!, wheres1(k)
52kM/g1o(k3). From this we can determine the first tw
spatial cumulants:

^^r &&5
2FX0

2

bG↓\
t5v`t, ~4.24!

^^r 2&&5s21
\2

4M2s2g2
1

4X0
2

b2G↓\
t5r 0

212DQQt.

~4.25!

Physically we see a consistent picture of the quantum
namics. The particle position grows linearly, with the velo
ity given by the terminal velocity obtained from̂̂p&&. Fur-
ther, the average position displays diffusion consistent w
Brownian motion, which can be used to determine the dif
sion constantDQQ . This is the same expression forDQQ that
was argued from the fluctuation-dissipation theorem in
classical limit~Kramers equation! in Sec. III.

As with the momentum distribution, the coordinate dist
bution in not Gaussian, and has longer tails.~In the Brown-
ian motion limit, these tails vanish; see below.! An analytical
explicit construction of the entire spatial distribution and
cumulant expansion is not quite trivial, as the characteri
function d(k,0,t) has singularities and different asymptot
time behavior depending on the value ofk. In particular, for
small values of k the position of the repellors2(k)
'sgn (k)X0A22 lnuku is not analytical aroundk50. This is
an indication that either various moments of the spatial d
tribution do not exist~perhaps they are divergent, as in th
case of the Cauchy distribution! or they increase with time a
a rate much faster than linear, similar to the caseb50 dis-
cussed in Refs.@9,10#. In other words, the function
ln d(s,k,t)us50 has some singularities in thek plane, which
have to be dealt with more care.

More generally, foruku,k0 and large times Eq.~4.6! can
be written approximately as

dS~t!

dt
52

bG↓\

2MX0
2

expS 2
s1~k!2

2X0
2 D S 12

s1~k!2

X0
2 D

3@S~t!2s1~k!#, ~4.26!

wheres1(k) is thek-dependent position of the attractor an
the boundary condition is in this caseS(t→`)→s1(k). In
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computing the leading term int one can use this approxima
trajectory. In this way one arrives at

ln d~s,k,t !us50' ln d0„s1~k!,k…us501H iFs1~k!

\
1

G↓

\

3FexpS 2
s1~k!2

2X0
2 D 21G J t. ~4.27!

For small values ofk the functiond(0,k,t) is narrower than
a Gaussian, as one can establish easily by comparing
Taylor series ink of this expression with Eq.~4.23!. Since
the Fourier transform of this function is nothing else but t
spatial distribution, we can thus conclude that at large d
tances the spatial distribution has longer tails than a Bro
ian particle.

2. zkz5k0

For this critical value ofk, the trajectory with initial con-
dition s50, k56k0, will approachS57X0 in the limit t
→`, as seen in Fig. 1. It is sufficient to look at the casek
5k0. To examine the behavior ofS(t) in the neighborhood
of the fixed point, it is convenient to take

S~t!52X0@12«~t!#. ~4.28!

The dynamics is then given by

d«~t!

dt
52

k0

MX0
1g~12«!expF2

~12«!2

2 G.2
k0

MX0
«2.

~4.29!

The solution in terms ofS then has the power-law behavio

S~t!52X0

k0t

k0t1MX0
. ~4.30!

Substituting this into the solution ford(s50,k,t), we obtain

ln d~0,k0 ,t !5 ln d0„S~ t !,k0…1F S k0

MX0g
21D G↓

\
2 i

FX0

\ G t
1F G↓

\g
1 i

FMX0
2

\k0
G lnF11

k0

MX0
t G1o~k0

3!.

~4.31!

3. zkz>k0

In the other regime, whenuku@k0 andt→`, b no longer
plays a role. Strictly speaking, this analysis is only valid
the b50 limit. The approximate equation for the trajecto
is

dS~t!

dt
52

k

M
, S~t!52

k

M
t, ~4.32!

and thus the characteristic function acquires approxima
the form

ln d~s,k,t !us505 ln d0S 2
kt

M
,kD2

iFkt2

2\M
he

-
-

ly

1
G↓

\ FA2pMX0

2uku
2tG . ~4.33!

Notice, that if for uku,k0 the characteristic function is nar
rower than a Gaussian, foruku.k0 one has just the opposite
the characteristic function tends to time-dependent cons
~modulo a nontrivial phase, however!. The above relation
shows that the short distance behavior of the propagator
a quite unusual behavior. In order to construct the propag
one should use the initial density distributionr0(r ,s)
5d(r ) and thusd0(s,k)51. The above behavior for largek
implies that even at finite times an exponentially small p
of the initial spatial distribution is left at the origin, namel
exp(2G↓t/\)d(r).

4. General behavior for all k

An alternate manner to construct the coordinate distri
tion d(0,k,t) is by solving numerically Eq.~4.6! for S(t) and
substituting the trajectory directly into Eq.~4.5! for d(0,k,t).
In Fig. 3 ~top! we compare the numerical solution to Eq
~4.5! and ~4.6! ~solid! with the Gaussian limit obtained b
keeping only the second cumulant~dashes!. The solutions
are obtained for a timet5100, andX051. The results are al
similar.

However, if one goes to shorter correlation lengths,
importance of higher order cumulants is striking. In the b
tom figure we show the same for a much shorter correla
length,X050.1, also att5100. All the remaining parameter
are kept at unity. As one can see, the exact result drops
abruptly atk5k0. The reason is that foruku.k0, the function
S(t) escapes towards2` linearly in time while the solution
for uku<k0 slowly converges to the stable fixed points. If on
factors out the overall exp(2G↓t/\) from ud(s,k,t)u, the re-
minder grows exponentially in time foruku<k0 and tends to
a time independent function foruku.k0 and as a result the

FIG. 3. Fourier transform of the coordinate distributiond(0,k,t)
for the case of a linear potential. The solid curve is the result
tained from Eqs.~4.5! and~4.6! from integration tot5100. This is
compared to a Gaussian~dashes! obtained from the second cumu
lant alone. The top and bottom correspond to different correla
lengthsX051 andX051/10.
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discontinuity atuku5k0 becomes thus more pronounced.

E. Brownian motion limit

Even though we have shown that the system equilibra
to the correct thermal limit, the time evolution towards th
equilibrium state is rather complex. Fork50 all trajectories
have the same asymptotic behavior,S(t→`)→0, irrespec-
tive of the initial conditions. It is not difficult, however, to
see that if a trajectory starts far away from the origin, it w
take an exponentially long time to reach the neighborhood
the origin, as the rhs of Eq.~4.6! is exponentially small for
usu@X0.

One can see from the expressions for the cumulants th
the limits ~see also Ref.@9#!

\

X0
→0, ~4.34!

X0

G↓
→0 ~4.35!

are taken, with the friction coefficientg remaining finite, one
obtains the case of pure classical Brownian motion. All b
the first two cumulants for coordinate and momenta van
and one is left with a Gaussian process. These limits can
achieved also by keeping\ finite and thus obtaining the cas
of a quantum Brownian particle.
th
s

f

t if

t
h,
be

V. QUADRATIC POTENTIAL

A classical particle in a harmonic oscillator potentia
treated with the Fokker-Plank or Langevin equations, w
thermalize, with the equilibration given by the virial theo
rem. When the particle is quantum, the fluctuations are c
otic and moreover the coupling between the two subsyst
is finite, we observe significant departures from this idealiz
situation.

A. Exact solution

For a particle in a harmonic oscillator potential, we st
with

H0~X!52
\2

2M
]X

21
Mv2X2

2
. ~5.1!

The equation ford(s,k,t) can be solved through quadrature
in the same manner we solved for the linear potential.
note that the solution we obtain is not limited to the simp
case under consideration. Analytic solutions are also poss
if we want to include a linear time independent potent
term, a general quadratic time dependent potential, and/
multidimensional treatment.

We shall look for a solution using the same representa
of the density matrix introduced in the previous section
Eq. ~2.17!. The equation for the density matrix is in this ca
F i\] t1
\2

M
] r]s2

ibG↓\2

2X0M
G8S s

X0
D ]s2Mv2srGr~r ,s,t !5H iG↓FGS s

X0
D21G J r~r ,s,t ! ~5.2!

and the corresponding equation for the functiond(s,t,k) is

H ] t1F k

M
2

bG↓\

2MX0
G8S s

X0
D G]s2Mv2s]kJ d~s,k,t !5

G↓

\ FGS s

X0
D21Gd~s,k,t !. ~5.3!
n-
Be-
hat

to-

of

b-
The solution of this equation can be obtained again using
method of characteristics@16#. In this case we will have a
two-parameter solution ford(s,k,t), which will depend on
the functionsS(t) and K(t), which satisfy the auxiliary
equations:

dS~t!

dt
52FK~t!

M
2

bG↓\

2MX0
G8S S~t!

X0
D G , ~5.4!

dK~t!

dt
5Mv2S~t!, ~5.5!

with the initial conditions
e S~t50!5s, and K~t 50 !5k . ~5.6!

We do not write the full solution here since it is more co
venient to solve the equations in action-angle variables.
fore we do so, let us examine the fixed point structure t
will emerge.

B. Attractors and repellors

The flow in the ‘‘phase space’’ (S,K) is not Hamiltonian
in character, which is not surprising. Some typical trajec
ries are shown in Fig. 4 forG(x)5exp(2x2/2). In this case
there is no qualitative difference between the dynamics
this correlator or a periodic function such asG(x)5cos(x).
In Fig. 4 ~left! we takev51 andg50.5. ~In the right we
illustrate the flow for the inverted parabola, which is o
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FIG. 4. Left: Time dependent flow@S(t),K(t)# associated with the time evolution of the density matrix in a harmonic oscillator poten
with the correlation functionG(x)5exp(2x2/2). The values of the parameters arev51 andg50.5. Right: Time dependent flow associate
with the time evolution of the density matrix in an inverted harmonic oscillator potential. The parameters areV051/10 andg51/2. The flow
of certain trajectories is shown with the arrows.~The units are determined fromX05M5\5b5G↓51.!
ua
he

a

no
e

ar

or-
of

er
our
bles

he
tained from our results below through the analytic contin
tion v5 iV0.! The general pattern of the trajectories in t
(S,K) plane seems to be quite simple, in the limitt→`,
irrespective of the initial conditions, all trajectories spir
counterclockwise around the origin~unless the motion is
overdamped!. The origin is thus a stable focus. There are
trajectories going away to infinity in any direction in th
‘‘phase space’’ (S,K). The plane (S,K) is separated into
four regions by the two curves

S50 and
K

M
2

b G ↓\

2MX0
G8S S

X0
D50. ~5.7!

Each of these lines corresponds toK̇(t )50 and Ṡ(t)50,
respectively. Near the focus it is simpler to solve the line
ized equations of motion

dS~t!

dt
52

K~t!

M
2

bG↓\S~t!

2MX0
2

, ~5.8!

dK~t!

dt
5Mv2S~t!, ~5.9!

which can be solved analytically. If the condition

v.
bG↓\

4MX0
2

5
g

2
~5.10!

is fulfilled, then the required trajectories are

S~t!5Fs cos v̄t2
2k1Mgs

2M v̄
sin v̄tGexpS 2

gt

2 D ,

~5.11!
-

l

-

K~t!5Fk cos v̄t1
gk12Mv2s

2v̄
sinv̄tGexpS 2

gt

2 D ,

~5.12!

where

v̄5Av22S bG↓\

4MX0
2D 2

5Av22
g2

4
. ~5.13!

The casev,g/2 is formally similar to the casev5 iV.
Strictly speaking, in the first order inb, in which we have
derived our formulas so far, one hasv̄'v and we shall use
mostly this approximation from here on.

C. Solution in action-angle coordinates

The flows shown in Fig. 4 suggest that action-angle co
dinates might be better suited to the dynamical analysis
this problem. The analytical construction of the higher ord
cumulants is somewhat cumbersome and we shall limit
analysis to some general features. The action-angle varia
are in this case

I 5
k2

2Mv
1

Mvs2

2
, ~5.14!

f5arctan
k

Mvs
. ~5.15!

Here I is related to the energy. We can now rewrite t
evolution equation Eq.~5.3! in these variables
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H ] t2v]f1g expS 2
I cos2 f

MvX0
2 D @sin f cosf]f12I cos2f] I #J d~ I ,f,t !5

G↓

\ FexpS 2
I cos2 f

MvX0
2 D 21Gd~ I ,f,t !.

~5.16!
rm
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The equations for the trajectories acquire the following fo

dF~t!

dt
5v2

g

2
sin 2F~t!

3expH 2
I ~t!

2MvX0
2 @11cos 2F~t!#J ,

~5.17!

dI~t!

dt
52gI ~t!@11cos 2F~t!#

3expH 2
I ~t!

2MvX0
2 @11cos 2F~t!#J , ~5.18!

with initial conditions

I ~0!5
k2

2Mv
1

Mvs2

2
, ~5.19!

F~0!5arctan
k

Mvs
. ~5.20!

Irrespective of the initial conditions the actionI (t) is always
a monotonically decreasing function, vanishing in the lo
time limit. If the motion is not overdamped~i.e.,v.g/2) the
phaseF(t) is a monotonically increasing function of time
In the weak friction limit, wheng!v, one can replace the
equations for the trajectories with the following approxima
equations:

dF~t!

dt
5v, ~5.21!

dI~t!

dt
52gI ~t!expF2

I ~t!

2MvX0
2G

3FI0S I ~t!

2MvX0
2D 2I1S I ~t!

2MvX0
2D G , ~5.22!

obtained after averaging the initial equations over the
motion ~i.e., over one period 2p/v). HereI0(x) andI1(x)
are the modified Bessel functions of first kind. The rhs of E
~5.22! behaves linearly inI for small values of the action an
as 1/AI for large values. This behavior is consistent with t
fact that the friction term is effective only near the origin
coordinate, i.e., fors'O(X0).

After manipulations similar to those used in the previo
section, and averaging over the fast motion and by chang
the integration variable from time to action@using Eq.
~5.22!#, one obtains that the asymptotic expression for
characteristic function is
g

st

.

s
g

e

ln d~ I ,f,t !5
2MX0

2

\2b
E

0

I da

a FI0S a

2MvX0
2D

2expS a

2MvX0
2D GFI0S a

2MvX0
2D

2I1S a

2MvX0
2D G21

, ~5.23!

whereI 5I (0), which was defined above as the initial valu
of the action variable. One can construct in a straightforw
manner all the spatial and momentum cumulants, by rev
ing to the initial space-momentum variabless and k. Note
that d(s,k,t)5d(I ,f,t) is time independent in this limit, as
expected. One can extract easily the behavior for large
small I .

ln d~ I ,f,t !'5 2
I

\2vb
2

3I 2

16\2bv2MX0
2

, I !MvX0
2 ,

2
8A2pMX0

2

3b\2 F I

2MvX0
2G 3/2

, I @MvX0
2 .

~5.24!

By taking the Fourier transform of the above expression
d(s,k,t) for eitherk50 or s50 one can determine either th
momentum or the spatial equilibrium distribution of a ha
monic oscillator coupled with a ‘‘reservoir.’’ For the osci
lator, the action variableI is, up to a trivial factor, simply the
total energyE. Hence one can also extract the energy dis
bution from the above expressions.

D. Eigenvalues of the time evolution operator

It is instructive to construct the eigenvalues and the eig
vectors of the time evolution operator. If we rewrite the tim
evolution equation for the density matrix in the form

i\] tr~r ,s,t !5Or~r ,s,t ! ~5.25!

we can consider the eigenvalue problem associated withO:

Or~r ,s!5lr~r ,s!. ~5.26!

The equilibrium solution will correspond tol50, and in
general the spectrum should be complex. While an analyt
solution does not seem possible for a generalG(x), if we
takeG(x)512x2/2, one can readily solve the problem.

For the equilibrium state (l50) one obtains

r0~r ,s!5expH 2
bMv2r 2

2
2

M

2b\2
s2J . ~5.27!
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We will discuss the physical properties of this solution in t
next section. This problem now becomes identical to
eigensolutions of the Fokker-Plank equation for the oscilla
@15#. Following that analysis, the eigenvalue spectrum
given in terms of two integers,n1 andn2. The basic roots are

l652
ig\

2
6\v̄, v̄5Av22

g2

4
~5.28!

and the entire spectrum can be written as

ln1 ,n2
52

ig\

2
~n11n2!1\v̄~n12n2!, ~ni50,1, . . .!.

~5.29!

The time evolution of the density matrix will equilibrate t
the l50 eigenvector, as all other components will decay
time as exp@2(n11n2)gt/2\#. The temperature dependen
appears indirectly throughg, which vanishes in theb50
fo

-

ui
r.

rib
e
r

s

limit. These patterns are shown in Fig. 5 forb.0, where it
is clear that all eigenvalues with the exception of the eq
librium state (l50) lead to decay. Forb50, the spectrum

collapses to the real axis, and all pointsl5nv̄ are infinitely
degenerate.

The eigenvalues for the inverted parabola can be obta
by making the transformationv5 iV0. In the eigenvalue
spectrum one replacesv̄ with i (V0

21g2/4)1/2. In this case
the eigenvaluel50, which corresponds to an equilibrium
solution, is no longer present. The eigenvalues are all pu
imaginary, and have values above and below the real ax

E. Recovery of equilibrium thermodynamics

For the harmonic oscillator, we would like to see wheth
or not the random matrix bath can act as an ideal heat b
The quantum equilibrium density matrix we would expect
req~X,Y!5 (
n50

`

expF2bS n1
1

2D\v Gfn~X!fn~Y!Y (
n50

`

expF2bS n1
1

2D\vG , ~5.30!

wherefn are the oscillator wave functions given by

fn~X!5F a2

p22n~n! !2G 1/4

Hn~aX!expS 2
a2X2

2 D , a25
Mv

\
~5.31!

andHn is the Hermite polynomial. Definingz5exp@2b\v#, we can write

req~X,Y!5
a~12z!

Ap
expF2

a2~X21Y2!

2 G (
n50

` S z

2D n 1

n!
Hn~aX!Hn~aY! ~5.32!

5Aa2~12z!

p~11z!
expH 2

a2

2~12z2!
@~X21Y2!~11z2!24XYz#J . ~5.33!
can

as
rdly

h is
er
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of
In the last line we have used the generating function
Hermite polynomials. If we take the leading order inb and
transform fromX,Y to r ,s, we find

req~r ,s!.Aa2b\v

2p
expF2

a2

2b\v
s22

a2b\v

2
r 2G ,

~5.34!

which is precisely thel50 eigenvector found in the previ
ous section. Hence, to leading order inb ~and\ in a sense,
as b enters asb\), and in the Brownian motion limit, we
recover the equilibrium density matrix. In general the eq
librium density matrix will have a non-Gaussian characte

F. Cumulant expansion

To get the cumulants, one can use the procedure desc
previously ~see also Ref.@9#! and derive that in thet→`
limit
r

-

ed

^^p2&&
2M

5
^^Mv2r 2&&

2
5

1

2b
5

T

2
, ~5.35!

as one might have expected. The higher order cumulants
be obtained by settingk50 or s50 respectively in the Tay-
lor expansion inI of the Eq.~5.23!. We shall not try here to
derive explicit expressions for higher order cumulants,
they apparently seem to be quite complicated and ha
very revealing. As Eq.~5.24! clearly shows, the equilibrium
distribution is much narrower than a Gaussian one, whic
already indicative of the presence of non-negligible high
than second order cumulants. In Fig. 6 we comp
ln d(I,f,t→`) as a function ofAI obtained from Eq.~5.23!
for X050.5,1,2,̀ ~narrowest to widest!. The widestX05`
is the equilibrium distribution exp(2bH0) @the first term in
the low I expansion, see Eq.~5.24!#. Notice that the equilib-
rium distribution isf independent as well as independent
the actual values of the friction coefficientg and of the cou-
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pling constantG↓. Except for a trivial overall factor, the
shape of this function is controlled by a single parameter,
‘‘characteristic action’’ 2MvX0

2, which depends on the
‘‘roughness’’ of the coupling to the ‘‘reservoir’’.

VI. TUNNELING IN A DOUBLE WELL POTENTIAL

For the problem of tunneling, we consider also the d
namical evolution of a particle in the double well potent
given by

H0~X!52
\2

2M
]X

21aS X22
b

2aD 2

. ~6.1!

For this or more complex potentials, analytic solutions are
longer possible, and we solve the dynamics numerically o
grid. To examine the effect of dissipation on tunneling,
first putb50 and solve the equation for some representa

FIG. 5. Eigenvalue spectrum for the time-evolution operator
the density matrixr(r ,s,t) for the harmonic oscillator withb.0.
For b50, the frictiong vanishes, and all eigenvalues lie on the re
axis. Thel50 solution corresponds to the equilibrium density m
trix.

FIG. 6. Fourier transform of the momentum and coordinate d
tribution ~they coincide in this case! for the harmonic oscillator for
the caseM5\5v5b51 here represented as a function ofAI ,
whereI is the action. The curves correspond toX050.5,1,2,̀ from
the narrowest to the widest. The Gaussian distribution (X05`),
obtained from the Brownian motion limit in which only the qu
dratic cumulant is nonzero, is shown as a dashed curve.
e

-
l

o
a

e

values of the parameterG↓. Let f1(X) andf2(X) be the first
two eigenstates of the double well. We take as initial st
the combination

f0~X!5
1

A2
@f1~X!2f2~X!#, ~6.2!

which represents a wave packet that is mostly localized
the left well. In view of the fact that splitting between th
first two states is very small,DE'331026, the tunneling of
the wave packet to the other well would take a very lo
time should there be no dissipation. At the beginning of
tunneling process, the rate increases almost linearly with
parameter. For very large time, all the tunneled streng
approach the limiting value 1/2 corresponding to the eq
distribution between the two wells.

Next, we study the dependence of the tunneling on
temperature. For this, we fix a value ofG↓ and solve the
evolution equation for different values ofb. One would ex-
pect that the rate would increase with the temperature,
when b decreases. Figure 7 shows such a behavior fob
50,0.05,0.10,0.15,0.20. For larger values ofb, the strength
on the right-hand side may come out negative for reasons
discussed in Sec. II.

At this point, we are also able to compare our results w
that obtained from the Caldeira-Leggett model. To reprod
the latter, it is sufficient to replace the Gaussian form of
correlation function that we have used up to now by its q
dratic approximationG(x)512x2/2. The effect may be
seen better by choosing a smaller value for the correla
lengthX0. The difference can be appreciable, not only in t
tunneled strengths but also in their shapes.

We have numerically computed the eigenvalue spectr
by expanding the density matrix in the eigenvectors of t
quartic potential, and diagonalizing the evolution operat
The complex eigenvalues with the smallest imaginary pa
are shown in Fig. 8~top! for b50 and 0.2. One can see i
Fig. 8 that the tunneling can be influenced by several nea
eigenvalues, and that asb increases, the patterns of impo

f

l
-

-

FIG. 7. Tunneling rate to the right hand well forG↓5p andb
50,0.05,0.10,0.15,0.20~downward from the highest curve!. The
Hamiltonian parameters area55, b5M51/2, \5X051. Here
P(t) is the probability to be in the right hand well.



Fi
n
ar

e
a

r,

an
nt
i-
ic
n

ive
th
o
o
r

ea
e

ith
p

on
th

o
im
a
th
e
-

ht

it
on
le

the
as-

a
atri-
ess.
by

ion
f-

.’’
een
us
stem
tan-
the
i-
at-

to

he
a
-
ed.

the
le.

.
as,
ays

lv-

in

trix

ue
ot
ge
p

e
lu

PRE 58 211DYNAMICS OF A SIMPLE QUANTUM SYSTEM IN A . . .
tant eigenvalues change considerably. In the bottom of
8, we plot the imaginary parts of the eigenvalues as a fu
tion of temperature for the ones with the smallest imagin
component. One observes that the imaginary part of the
genvalue with the smallest nonvanishing absolute value
parently vanishes in the limitT→0. This is consistent with
Caldeira and Leggett’s conclusion@2# that atT50 dissipa-
tion decreases the tunneling rate. This is not true, howeve
high temperatures, as one can see.

VII. CONCLUDING REMARKS

We have developed a dynamical theory of simple qu
tum systems coupled to complex quantum environme
where the environment is a ‘‘chaotic’’ bath of intrinsic exc
tations. The model Hamiltonian we introduce for the intrins
subsystem incorporates the generic properties of finite ma
body systems. This includes an average level density
states sharply increasing with energy, the presence of un
sal spectral fluctuations for the intrinsic system, and
variation of these properties while changing the ‘‘shape’’
the intrinsic system modeled with parametric banded rand
matrices. In this way, the intrinsic system is capable abso
ing energy due to its large heat capacity. In the present r
ization, the intrinsic system was not allowed to perform m
chanical work.

The dynamical evolution equation has been derived w
out making any uncontrollable approximations or assum
tions, and in many instances one can construct full soluti
by quadratures. In the classical and weak-coupling limits,
evolution equation reduces to Kramers form.

Our analysis was limited to the case when the motion
the simple system can be treated in the adiabatic approx
tion. Thus, we have not taken advantage of another par
eter in our description of the reservoir: the bandwidth of
random matrix. It is known that banded random matric
lead to localization@17#. One can show that for finite band

FIG. 8. Top: Temperature behavior of the complex eigenval
of the double well potential with the smallest imaginary parts. B
tom: Temperature dependence of the imaginary part of the ei
values with smallest absolute value. One of the eigenvalues ap
ently vanishes in the limitT→0, which suggests that atT50
dissipation decreases the tunneling rate@2#. One can see that th
tunneling process is not always dominated by a single eigenva
g.
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widths the influence functional in our model can be broug
to a form similar to the one suggested by Cohen@11# to
describe localization, although we did not analyze this lim
here. It would be interesting to explore whether localizati
in the ‘‘reservoir’’ states induces localization in the simp
quantum system coupled to such a reservoir.

The quantum evolution equation we have derived for
density matrix is not more complicated to solve than a cl
sical Fokker-Planck equation. Although we started with
Gaussian process characterized by parametric random m
ces, we ended up with a non-Gaussian dynamical proc
The spatial and momentum distributions are characterized
cumulants of all orders.

We thus have now at our disposal a quantum evolut
equation, with an effective velocity dependent friction coe
ficient and also a finite coupling strength to the ‘‘reservoir
As far as we know, these latter two aspects have not b
considered previously in the literature. In particular, previo
approaches designed the coupling between the subsy
and the environment in such a way as to reproduce the s
dard statistical physics results, which are only obtained in
limit of vanishing coupling. The shape of equilibrium distr
butions that we have determined can be unambiguously
tributed to the finite strength of the coupling, in particular
the specific functional form ofG(x).
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APPENDIX A: EVOLUTION EQUATIONS FOR THE
AVERAGE PROPAGATOR AND THE INFLUENCE

FUNCTIONAL

The time evolution of the fast subsystem is found by so
ing the time-dependent Schro¨dinger equation in the form@6–
10#:

f~ t !5T expF2
i

\ E
0

t

ds H1@X~s!#Gf~0!5U„X~ t !…f~0!,

~A1!

where T is the time ordering operator, andU„X(t)… the
propagator.~We assume that the initial statef(0) is uncor-
related with the HamiltonianH1„X(t)… at later times; corre-
lated initial conditions have been discussed elsewhere@6#.!
One can show that in the leading order in an expansion
1/N0 the average propagatorU„X(t)…5U„X(t)… is diagonal
in the representation we have chosen. Its diagonal ma
elements have the following form:

s
-
n-
ar-

e.
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Uk„X~ t !…5K kUT expF2
i

\ E
0

t

ds H1„X~s!…GUkL
5expS 2

i«kt

\ Ds„X~ t !…, ~A2!

@note thats„X(t)… is state independent# ands„X(t)… satisfies
the following integral equation@8#:

s~ t,t0!512
G↓

\ E
t0

t

ds1E
t0

s1
ds2s~s1 ,s2!s~s2 ,t0!

3Pb~s12s2!GS X~s1!2X~s2!

X0
D . ~A3!

In the following we shall consider thatt050. HerePb(s) is
the fourier transform of the matrix band form factor in th
correlator@h1(X)# i j @h1(Y)#kl, defined in Eq.~2.4!:

Pb~s!5Pb* ~2s!5
k0

A2p\
expF2

k0
2

2\2S s1 i
\b

2 D 2G .

~A4!

The influence functional can be determined by solving
following evolution equation:

L„X~ t1!,Y~ t2!…5s~ t1,0!s* ~ t2,0!

1
G↓

\ E
0

t1
ds1E

0

t2
ds2L„X~s1!,X~s2!…

3Pb* ~s12s2!GS X~s1!2Y~s2!

X0
D

3s~ t1 ,s1!s* ~ t2 ,s2!. ~A5!

APPENDIX B: AVERAGE PROPAGATOR AT FINITE
TEMPERATURES

For a given pathX(t) the averaged propagators satisfies
the following equation:

s~ t,t0!512
G↓

\ E
t0

s1
ds1E

t0

s1
ds2s~s1 ,s2!s~s2 ,t0!

3Pb~s12s2!GS X~s1!2X~s2!

X0
D , ~B1!

where

Pb~s!5
k0

A2p\
expF2

k0
2

2\2S s1 i
\b

2 D 2G
5P0~s!1

ib\

2

dP0~s!

ds
1O~b2!. ~B2!

In the above equationss(s1 ,s2) represents the average
propagator from times2 to time s1, as for an arbitrary path
X(t) it is not obvious that this propagator depends only
the time differences12s2, as was the case in the adiaba
limit and for b50. We shall assume that the replacemen
e

n

P0~s![
k0

A2p\
expF2

k0
2s2

2\2 G→d~s! ~B3!

is legitimate and compute the first correction inb to the
propagator.

In the equations for the propagator and the influence fu
tional Pb(s) enters under integrals with some arbitrary fun
tions as follows:

E
2`

0

ds Pb~s!F~s!'E
2`

0

ds P0~s!F~s!

1
ib\

2 E
2`

0

ds
dP0~s!

ds
F~s!

'
1

2
F~0!1

ibk0

2A2p
F~0!

2
ib\

4

dF~s!

ds U
s50

, ~B4!

where we have used the relations

E
2`

0

ds P0~s!F~s!5
1

2
F~0!, ~B5!

E
2`

0

ds
dP0~s!

ds
F~s!5

k0

A2p\
F~0!2

1

2

dF~s!

ds U
s50

,

~B6!

P0~0!5
k0

A2p\
. ~B7!

After a few simple manipulations and after taking into a
count that

s~s,s!51, ~B8!

ds~s1 ,s2!

ds1
U

s15s2

5
ds~s1 ,s2!

ds2
U

s15s2

50, ~B9!

d

ds2
GS X~s1!2X~s2!

X0
D U

s15s2

5
d

ds1
GS X~s1!2X~s2!

X0
D U

s15s2

50, ~B10!

one can easily show that up to terms of orderO(b2) the
averaged propagator is given by the following expression

s~ t,0!5s~ t !5expF2
G↓t

2\ S 12
ibk0

A2p
2

ibG↓

4 D G .

~B11!

In the equation for the influence functional we shall ne
the quantity
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s~ t !s* ~ t8!5expF2
G↓~ t1t8!

2\
2S ibk0

A2p

1
ibG↓

4 D G↓~ t2t8!

2\ G
'expF2

G↓~ t1t8!

2\ G . ~B12!

We are allowed to neglect the imaginary contribution in t
exponent as in all relevant integralst2t85O(b).

APPENDIX C: INFLUENCE FUNCTIONAL AT FINITE
TEMPERATURES

In order to simplify somewhat the derivation we sh
introduce the ‘‘reduced’’ influence functional at temperatu
b:

Lb„X~ t1!,Y~ t2!…5Lb„X~ t1!,Y~ t2!…expFG↓~ t11t2!

2\ G ,
~C1!

which, up to correction terms of orderO(b2) in the averaged
propagators, satisfies the equation

Lb„X~ t1!,Y~ t2!…511
G↓

\ E
0

t1
ds1E

0

t2
ds2Lb„X~s1!,Y~s2!…

3Pb* ~s12s2!GS X~s1!2Y~s2!

X0
D . ~C2!

We have shown earlier@8# that for b50

L0~X~ t1!,Y~ t2!!5L0~ t1 ,t2!

5expH G↓

\ E
0

t,FGS X~s!2Y~s!

X0
D GdsJ ,

~C3!

where t,5min(t1,t2). In computing the first order correc
tions in b for Lb„X(t1),Y(t2)…, we shall proceed as in th
previous appendix, by making the expansion

Pb* ~s!'P0~s!2
ib\

2

dP0~s!

ds
~C4!

and taking the limitk0→`, which allows us to make the
replacementP0(s)→d(s) in all the integrals. The only term
that requires a more careful treatment in the equation for
reduced influence functional is

b
]Lb„X~s1!,Y~s2!…

]~s12s2!
'b

]L0„X~s1!,Y~s2!…

]~s12s2!
5O~b2!,

~C5!

which can thus be neglected. The reason is t
L0„X(s1),Y(s2)… has a discontinuous partial derivative
s1-s250. Remembering that we need the influence fu
tional for t15t25t only and by using the obvious exact re
resentation of the integral term
e

t

-

E
0

t

ds1E
0

t

ds2F~s1 ,s2!5E
0

t

ds1E
0

s1
ds2F~s1 ,s2!

1E
0

t

ds2E
0

s2
ds1F~s1 ,s2!

~C6!

for an arbitrary functionF(s1 ,s2) and by applying the rules
described in the previous Appendix we obtain that

Lb„X~ t !,Y~ t !…511
G↓

\ E
0

t

dsLb„X~s!,Y~s!…

3GS X~s!2Y~s!

X0
D

1
ibG↓

4X0
E

0

t

dsLb„X~s!,Y~s!…

3@Ẋ~s!1Ẏ~s!#G8S X~s!2Y~s!

X0
D ,

~C7!

where G8(x)5dG(x)/dx. In the above evolution equatio
one can use eitherL0(s1 ,s2) or Lb„X(s),Y(s)… on the rhs.
An alternative way to derive this equation is to use the f
that for two given pathsX(s1) andY(s2) one has the explicit
symmetryL0(s1 ,s2)5L0(s2 ,s1) and also that

dP0~s!

ds
52

dP0~2s!

ds
~C8!

before making the replacementP0(s)→d(s) as described
earlier.

This evolution equation can be easily solved as in the c
of b50 and the final answer for the influence functional
Eq. ~2.11!.

APPENDIX D: EFFECTIVE HAMILTONIAN AT FINITE
TEMPERATURES

Having obtained an expression for the influence fun
tional at finite temperatures we can write down from t
Feynman-Vernon path integral an expression for the eff
tive Lagrangian:

L5
MẊ2

2
2U~X!2

MẎ2

2
1U~Y!2 iG↓FGS X2Y

X0
D21G

1
bG↓\

4X0
@Ẋ1Ẏ#G8S X2Y

X0
D . ~D1!

We can introduce now the corresponding canonical con
gate momenta

PX5
]L

]Ẋ
5MẊ1

bG↓\

4X0
G8S X2Y

X0
D , ~D2!

PY5
]L

]Ẏ
52MẎ1

bG↓\

4X0
G8S X2Y

X0
D ~D3!
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and construct the effective Hamiltonian according to us
rules

H5PXẊ1PYẎ2L

5
1

2M FPX2
bG↓\

4X0
G8S X2Y

X0
D G2

1U~X!

2
1

2M FPY2
bG↓\

4X0
G8S X2Y

X0
D G2

2U~Y!1 iG↓FGS X2Y

X0
D21G . ~D4!

The requantization of this effective Hamiltonian is straig
forward (PX→2 i\]X and PY→2 i\]Y) and it is conve-
d,
.
v.

,
.

v.
.

v.
w

l

-

nient to reorder the different terms in the Hamiltonian
follows:

H5
~PX1PY!~PX2PY!

2M
1U~X!2U~Y!

2
bG↓\

4MX0
G8S X2Y

X0
D ~PX2PY!1 iG↓FGS X2Y

X0
D21G .

~D5!

Any other choice of ordering leads to an evolution equat
for the density matrixr(X,Y,t), which does not conserve
probability. One can consider alternative orderings, but
the final analysis these lead to slight renormalizations
various quantities, but to no qualitative effects.
,
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,
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ns,
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